Best Management Practices for Dairy Manure Nitrogen Fertilization of Forage Corn

Manure is: A milk burden...

- ~ 1,300 dairies regulated by the 2013 Dairy General Order (R5-2013-0122)
- 2014 CA milk production was 21.2 million tons
- Tulare, Kings, and Fresno 2014 milk production was 9.4 million tons
- Tri-county value in 2014 = \$4.1 billion
- Tri-county manure excreted ≈ 27 mil tons*

*(From ASAE Manure Production and Characteristics, 2005)

(From CDFA, 2014-15 Ag Stats and County Annual Crop Reports)

...and a crop asset.

2014 CA Equivalent Tons of Nutrients Excreted from Tri- County Milk Cows and Replacements

Animal	Nitrogen	Phosphorus	Potassium
Replacements	38,000	5,200	13,000
Milk Cows	40,000	7,300	17,000
Total	78,000	12,500	30,000

(From ASAE Manure Production and Characteristics, 2005)

2014 Silage Corn Production

There's plenty N to go round (example)

5 million tons corn X 9.5 lbs N applied

23,750 tons N applied

1 ton corn

That leaves

78,000 tons N excreted - 23,750 tons N applied = 54,250 tons N remaining

54,250 tons N remaining to be...

Used, exported, stored, or "lost"

Forage Corn Nutrient Management

Prescribing and following a plan

Where to begin – TESTING

- Soil preplant test
 - All macros, salinity, pH, and micros only if a problem is suspected

Irrigation water as a nitrogen source

- Irrigation water testing
 - For NO₃-N, salinity, pH, and heavy metals
 - Whenever a new source is used
 - At the beginning of the cropping season
 - Depth change of well pump

water test NO_3 -N = 0.23 lbs NO_3 -N / $ac*in H_2O$

e.g: $H_2O[NO_3-N] = 2 \text{ ppm; will apply 30"}$

1.
$$\frac{2ppm NO_3-N}{ac^*in H_2O}$$
 0.23lbs NO_3-N 30 $\frac{ac^*in H_2O}{ac}$ = $\frac{13.8 lbs NO_3-N}{ac}$

Know your manure's N value

Liquid and solid manure **N** source sampling (as per 2013 Dairy Order MRP)

Lagoon Manure

- Each application of lagoon manure, measure volume and note the date.
- Quarterly, during lagoon manure application – ammon. N and TKN
- Annually, before irrigation blending NO₃-N, ammon. N, and TKN

Solid Manure

- Each application to each area, weight applied and % moisture
- 2X per year, total N and % moisture

Can you accurately measure applications?

 Check out Deanne Meyer et al.'s work on proper sampling and measuring of manure:

Tree 2 – Obtaining a Representative Sample of Liquid Manure

Tree 1 – Measuring Liquid Manure

Setting a Goal

- Realistic yield goals
 - Field by field crop history should indicate attainable yields
- Address yield limiting factors
 - Soil and irrigation water salinity, background soil fertility, disease pressure, etc. should be managed

Plan Your Nitrogen to Match Your Yield

N application dependent on yield expectation

Geisseler et al., 2012

Silage Corn Nitrogen Removal and N Use Efficiency			
Silage Yield in Tons/Acre	25	30	32
Lbs. N/Acre Removed	208	249	266
Assuming 70% applied- removed efficiency	297	355	380

Removal rates based on 2002 Western Fertilizer Handbook 9^{th} ed., WPHA, estimations.

Match the Supply of N to Crop Need

Geisseler et al., 2012

Timing Manure Applications to Plant Availability

Table 1. Guidelines for animal manure N mineralization in California.

	Year 1	Year 2
	- % applied organic N mineralized-	
Dairy lagoon water	40-50	15
Dairy lagoon sludge and slurry; corral manure	20-30	15
Dairy mechanical screen solids	10-20	5

^{1. 40-70%} of mineralization value will occur within the first 4-8 weeks following application (Andrews & Foster, 2007; Gale et al., 2006). It is suggested that the lower value (40%) be used for late fall or winter applications.

Pettygrove, Heinrich, and Crohn, 2009

Some K+ and P₂O₅ Considerations

Managing soil accumulation

Macro-nutrient ratios of manure and silage corn

Total dairy excretion

N	P_2O_5	K ₂ O
2.7	1	1.3
1.9*	1	1.3

ASAE; Crop reports; Pettygrove 2010

Manure as solids*

N	P ₂ O ₅	K ₂ O	
2.2	1	0.7	

Pettygrove 2010

Manure as liquid*

N	P_2O_5	K ₂ O	
2.2	1	3.6	

Pettygrove 2010

Corn removal

N	P_2O_5	K ₂ O	
2.3	1	2.3	

WFH 9th ed. 2002; Pettygrove 2010

- Crop N need based applications will accumulate P
- Crop N or P based Lagoon applications will accumulate K

^{*} After 30% N loss by NH₃ volatilization

^{* %} dry wt. basis from corral, pond, mech screen and compost at 11 CV dairies

^{*} Median values from 9 CV dairies

Mitigating Excess K+

- Excess K+ may act like Na+, reducing infiltration.
 - Gyp and leach like Na+
- Excess K+ alfalfa may cause milk fever
 - Balance at TMR or gyp and leach like Na+
- P₂O₅ based manure fertility plan

P₂O₅ Erosion and Induced Zn++ Deficiency?

Erosion

 Not generally a concern in the San Joaquin Valley

Induced Zn++ deficiency

- Likely not a problem in manured fields
 - Zn++ chelation by organic acids from manure
 - High [Zn++] associated with manure application (Leytem et al., 2011; Moore et al., 2014)

Summary

- There is enough N, P, and K in a dairy forage system for the crops grown
- Well managed nutrients will be an asset
- Testing soil, irrigation water, and manure is key to planning
- Make data-based yield goals and address limitations
- Applications are as precise as the metering method
- Matching manure N application to crop N need ≠ easy + precise
 - We can always improve
- Consider P fertility-based manure application + N fertilizer/legume rotation

