DIAGNOSING FIELD PROBLEMS
 Mick Canevari ${ }^{1}$

Overview

Alfalfa is grown across a wide range of soil, water and climate conditions which challenges the management decision of growers to produce the highest quality and high yielding hay. Over the past decade, there has been a shift of alfalfa plantings from some of the fertile soils in the Central Valley to the more marginal soils once thought to be unsuitable for alfalfa. With these changes and the demand for higher quality and increased production, alfalfa growing requires a keen eye and ability to recognize signs or symptoms of problems that can cause significant production losses.

Before one can diagnose field problems effectively, one must understand the requirements necessary for alfalfa hay production. There are several publications/field guides available that will enable growers and industry persons to become familiar with practices required for alfalfa production. A list of suggested references are made at the end of this paper.

Understanding and recognizing problem symptoms will not only help solve the current problems but also avoid future problems of the same order. In most cases, management decisions made to avoid problems are much more successful than are options to correct problems. This is particularly important with perennial crops where preplant operations are carefully considered and plans are well thought out prior to the establishment of the crop.

Techniques in Diagnosing Problems

One should ask for and accumulate as much information as possible from the grower, PCA, and seedsmen on current cultural practices and previous crop practices. Listed is an outline of suggested questions which should be addressed in determining possible cause and effect of field problems.

Pre-field examination survey:

- Previous crop history:

Health and yield of crop, pesticides used, insect diseases, weed problems and fertilization.

- Soil analysis:
pH, EC, nutrient level, soil compaction or any subsurface layering that will impede water or roots.
- Irrigation water:
pH, EC, source and amount applied.
- Variety characteristics:

Dormancy type, pest resistance and proven yield performance for the area.

- Preplant operations used:

Ripping, chiseling, leveling, seed bed condition at planting.

[^0]```
Postplant operations:
 Herbicides, insecticides used, limited or excessive moisture during
 germination, seeding rate and depth of seeds.
Irrigation:
 Length of runs (field distance)
 Time of sets (hrs/irrigation setting)
 Amount of water applied per irrigation (acre ft.)
 Depth of water penetration in soil }24\mathrm{ hours following irrigation
 Time and location of any standing water
 Tail water drainage system used
 Number of irrigations applied between cuttings
Harvesting:
 Cutting frequency
 Cutting height
 Equipment traffic and compaction
```


## Field Examination

1. Walk or drive around the entire field. Avoid focusing on one small area only.
2. Observe the field for uniformity of plant height and color. Observe for problems related to soil, water and root disorders.
3 Dig up affected plants carefully, keeping entire root system intact. Pulling plants by hand will break roots or remove nematode galls.
3. Observe both color and firmness of roots.
4. Vertically slice the root and look for internal discoloration.
5. Dissect the crown and observe for discolored or rotted tissue.
6. Evaluate the stems and leaves for abnormal color, insect feeding, spots or lesions.
7. Sweep net an area to determine insect type and population.
8. Observe the soil surface for holes, mounds, live or parasitized insects, white fungal growth, or evidence of standing water.
9. Determine if affected area of field displays a random pattern or mechanical (precise) pattern.
11 Refer to chart for symptoms found.

## Summary

To be successful in accurately diagnosing field problems takes an open mind, being objective, being thorough, and years of experience. As part of this paper a field chart has been developed to assist both growers and industry representatives to determine causal agent from plant symptomology. More detailed information on specific problems can be obtained from:

1 UC IPM manual on Alfalfa Hay, \#3312, UC Cooperative Extension Office.
2 Compendium of Alfalfa Diseases, APS Press.
3 California Alfalfa Symposium Proceedings. Agronomy Department, UC Davis.

The following publications can be obtained from the Certified Alfalfa Seed Council, P.O. Box 1017, Davis, CA 95617-1017.
4. Alfalfa Analyst
5. Alfalfa for Beef Cows
6. Alfalfa: The Crop For The Soil
7. Alfalfa for Dairy Animals
8. Alfalfa Hay Quality
9. Alfalfa - The High Quality Hay for Horses
10. Buying and Selling Alfalfa Hay
11. Establishing Alfalfa Stands
12. Grazing Alfalfa
13. Improving Alfalfa Forage Quality - How to Detect and Manage the Potato Leafhopper Problem
14. Making Quality Alfalfa Hay in Less Time, With Fewer Risks
15. Manage the Alfalfa Weevil to Improve Alfalfa Yield and Quality
16. Weeds Affecting Alfalfa Quality
17. Alfalfa in the South
18. Alfalfa in the South - slide set and video
19. Western Alfalfa Seed Production Story - slide set and video
20. Annual National Alfalfa Symposium Proceedings
21. Alfalfa Varieties

[^1]
## ALFALFA

Key to Diagnosing Field Problems

| SYMPTOMS | PESTS |  |  |  | SYMPTOMS | PESTS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LEAVES |  |  |  |  | ROOTS |  |  |  |  |  |
| Leaf skeletonizing | 6 | 7 |  |  | Tap root rotted | 42 | 44 |  |  |  |
| Leaf chewed | 7 | 8 | 12 |  | Tan/black root lesions | 39 |  |  |  |  |
| Leaf curled, sticky mass | 11 | 13 |  |  | Internal vascular redding | 35 | 37 |  |  |  |
| Leaf yellowing/veinal | 11 | 23 | 24 | 50 | Internal vascular-yellow/tan | 36 | 41 | 42 |  |  |
| Yellow tip, leaf firing | 9 | 37 |  |  | Root chewed | ! 2 | 4 |  |  |  |
| Leaf crinkle | 10 | 25 |  |  | Soft rootputrid odor | 14 |  |  |  |  |
| Yellowing between veins/interveinal | 27 | 46 | 50 |  | Galls on lateral roots | 28 |  |  |  |  |
| Small brown/black spots | 30 | 32 |  |  | Stubby roots | 22 |  |  |  |  |
| Pale green/grey underside | 33 |  |  |  | CROWNS |  |  |  |  |  |
| Tan spots | 31 |  |  |  | Bluish/black, dry rot | 40 |  |  |  |  |
| Tan marginal lesions | 38 |  |  |  | Orange/red flecks | 38 |  |  |  |  |
| Orange spores | 43 |  |  |  | Brown/yellow lesions | 39 |  |  |  |  |
| Marginal white spots | 26 | 47 |  |  | Dark brown necrotic tissue | 45 |  |  |  |  |
| Red margins | 9 | 49 |  |  | STEMS |  |  |  |  |  |
| Dark Bluish/green | 15 | 17 | 28 | 48 | Stem \& leaf feeding | 1 | 2 | 3 | 5 | 12 |
| Leaf strapping/narrow | 17 | 18 |  |  | Black spots | 32 |  |  |  |  |
| Leaf clasping, stick together | 19 |  |  |  | Wilting/flagging | 40 | 42 |  |  |  |
| Leaf burning | 15 | 20 | 21 |  | Yellow stunting | 37 | 41 |  |  |  |
| Darken, water soaked | 16 |  |  |  | White mycellium mass | 34 |  |  |  |  |
| Leaf whitening | 14 | 26 | 29 |  | Dead stem buds, swollen internodes | 29 |  |  |  |  |
|  |  |  |  |  | Plant wilt/stem green-taproot brown | 37 |  |  |  |  |


| VERTEBRATE PESTS, INSECTS, AND ARTHROPODS |  |  |  |  |  | ENVIRONMENTAL FACTORS AND TOXICITIES |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Squirrels | 6 | Weevil | 11 | Aphid | 14 | Scald | 19 | EPTC | 24 | Diuron |
| 2 | Meadow mice | 7 | Armyworm | 12 | Grasshoppers | 15 | Salt | 20 | Buctril | 25. | Roundup |
| 3 | Rabbits | 8 | Alfalfa caterpillar | 13 | Whitefly | 16 | Frost | 21 | Paraquat | $26$ | Air pollution |
| 4 | Gophers | 9 | Leafhopper |  | Whitell | 17 | Moisture stress | 22 | Balan | $\begin{aligned} & 26 \\ & 27 \end{aligned}$ | Air pollution Abiotic/ |
| 5 | Deer | 10 | Thrips |  |  | 18 | 2,4-DB | 23 | Velpar | 27 | Abiotic/ non pathogenic |
| NEMATODES AND PLANT DISEASES |  |  |  |  |  |  |  | NUTRIENT DEFICIENCIES |  |  |  |
| 28 | Root knot nematode | 33 | Downy mildew | 38 | Stagonospora crown/root rot | 43 | Rust | 47 | Potassium | IES |  |
| 29 | Stem nematode | 34 | Sclerotinia rot | 39 | Rhizoctonia root canker | 44 | Pythium | 48 | Phosphorus |  |  |
| 30 | Common leaf spot | 35 | Fusarium wilt | 40 | Southern anthracnose | 45 | Fungi complex | 49 | Boron |  |  |
| 31 | Stemphylium leaf spot | 36 | Phymatotrichum root rot | 41 | Bacterial wilt | 46 | Virus | 50 | Nutrition |  |  |
| 32 | Spring black stem | 37 | Verticillium wilt | 42 | Phytophthora root rot |  | : |  | Nutrion |  |  |


[^0]:    ${ }^{1}$ University of California Cooperative Extension, Field Crops Farm Advisor, San Joaquin County, 420 South Wilson Way, Stockton, CA 95205.

[^1]:    Contributors:
    Special thanks to:
    Mike Davis, UC Extension Plant Pathologist, UC Davis
    Carol Frate, UC Extension Farm Advisor, Tulare County
    Steve Orloff, UC Extension Farm Advisor, Siskiyou County

