
Properties of Manure as a Fertilizer for Forages

Anthony Fulford Nutrient Management/Soil Quality Advisor Alfalfa and Forage Field Day September 23, 2021

University of California Agriculture and Natural Resources

Forage Crop Trends – Stanislaus Co.

- Historical Shifts in Crop Production (1960 to 2018)
 - Alfalfa declined on average 330 ac/yr
 - Corn silage increased on average 1170 ac/yr
 - Corn (24 T/ac) and alfalfa (7 T/ac)
- Top Commodities Economic Value (2019)
 - Almonds (34%) 1.2 billion
 - Milk (17%) 630 million
 - Silage (4%) 140 million

Forage Crop Nutrient Removal

- Corn silage 24 T/ac @ 67% Moisture
 - N: 232 lbs/ac
 - P: 32 lbs/ac
 - K: 145 lbs/ac
- Alfalfa 7 T/ac @ DM Basis
 - N: 357 lbs/ac (N fixation)
 - P: 37 lbs/ac
 - K: 285 lbs/ac

Potassium Deficiency: Yellow or white spots on the margins of the leaflets

Source: IPNI Nutrient Removal Calculator

Meeting Nutrient Requirements

- Match Nutrient Addition to Crop Removal
 - "Book values" for nutrient removal rates

- Account for Nutrient Inputs and Outputs
 - Inputs: Fertilizer, irrigation, soil, and crop rotation credit
 - Outputs: Crop nutrient removal and off-site transport
- Appropriate for Initial Nutrient Management Plans
 - Adjustments needed to refine nutrient budget

Nitrogen concentrations in harvested plant parts - A literature overview

Daniel Geisseler

Nitrogen Reporting Requirements

- Irrigated Lands Regulatory Program (2003)
 - Groundwater regulations added (2012)
- Central Valley Water Quality Coalitions
 - Work directly with growers/members
 - Water quality monitoring
 - Meet reporting requirements
- Irrigation and N Management Plan Worksheet
 - Minimize N loss to surface and groundwater
 - Meet crop N needs
 - Including organic amendments

		IRRIGATION MANAGEMENT		
1. Irrigation Method*		Pre-Season Planning		
(check one for Primary; if applicable, check one for Secondary) Primary Secondary ¹		2. Crop Evapotranspiration (ET, inches)		
	Drip Micro Sprinkler Furrow Sprinkler Border Strip	 Anticipated Crop Irrigation (inches) Irrigation Water N Concentration 		
	Flood	(ppm or mg/L, as NO₃-N)		
	5. Irrigation I	Efficiency Practices* (Check all that a	apply)	
 Laser Leveling Use of ET in scheduling irrigations Water application schedule to need Use of moisture probe (e.g. tensiometer) 				-
	H	ARVEST / YIELD INFORMATION		
	Harvest / Yield I	nformation	Expected (A)	Actual (B
	Harvest/ Heru	inormation	Expected (A)	Actual (B
6. Production Unit (lbs, tons, etc.)	;	7. Harvested Yield*		Actual (B
(lbs, tons, etc.)				Actual (B
(lbs, tons, etc.) 8. Nitrogen Eff	;	7. Harvested Yield*	Recommended/ Planned N (A)	Actual N (B)
(lbs, tons, etc.) 8. Nitrogen Eff	i ciency Practices* ill that apply)	7. Harvested Yield* NITROGEN MANAGEMENT	Recommended/	Actual N
(lbs, tons, etc.) 8. Nitrogen Eff (Check a	iciency Practices* all that apply)	 7. Harvested Yield* NITROGEN MANAGEMENT Nitrogen Sources 9. Soil – Available N in Root Zone 	Recommended/	Actual N
(lbs, tons, etc.) 8. Nitrogen Eff (Check a Split Fertilizer Ap Irrigation Water I	iciency Practices* all that apply) oplications N Testing	7. Harvested Yield* NITROGEN MANAGEMENT Nitrogen Sources 9. Soil – Available N in Root Zone (Annualized, Ibs/ac) 10. N in Irrigation Water*	Recommended/	Actual N
(lbs, tons, etc.) 8. Nitrogen Eff (Check a Split Fertilizer Ap Irrigation Water I Soil Testing Tissue/Petiole Te	Ficiency Practices* all that apply) oplications N Testing esting	7. Harvested Yield* NITROGEN MANAGEMENT Nitrogen Sources 9. Soil – Available N in Root Zone (Annualized, Ibs/ac) 10. N in Irrigation Water* (Annualized, Ibs/ac) 11. Organic Amendments*	Recommended/	Actual N
(lbs, tons, etc.) 8. Nitrogen Eff (Check a Split Fertilizer Ag Irrigation Water I Soil Testing Tissue/Petiole To Fertigation Foliar N Applicat Cover Crops	iciency Practices* all that apply) oplications N Testing esting ion	7. Harvested Yield* NITROGEN MANAGEMENT Nitrogen Sources 9. Soil – Available N in Root Zone (Annualized, Ibs/ac) 10. N in Irrigation Water* (Annualized, Ibs/ac) 11. Organic Amendments* (Manure/Compost/Other, Ibs/ac estimate)	Recommended/	Actual N

waterboards.ca.gov

Meeting Nutrient Requirements - Manure

- Manure is a Valuable Source of Plant Nutrients
 - But there is no guaranteed nutrient content, testing is critical!
 - Timing of nutrient availability, especially nitrogen, difficult to estimate

- Manure is More Than a Nutrient Source
 - Carbon additions help build soil tilth and health
 - Bedding material inclusion can also add organic matter to soils

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources

Manure as a Fertilizer Source

 Challenges to using manure as a fertilizer source – handling, storage and application method

Handling/Storage or Application Method (solids)	Nitrogen Loss, %
Daily Scrape & Haul	13 – 35
Manure Pack	20 - 40
Open Lot	40 - 60
Broadcast w/out Incorporation	15 - 30
Broadcast w/ Incorporation	1-5

Source: Sutton et al., 1983

Manure as a Fertilizer Source

• Challenge to using manure as a fertilizer source – not all N present is immediately available to the crop

Manure Type	Year 1, Nmin %	Year 2, Nmin %
Dairy Lagoon Water	40 — 50	15
Dairy Lagoon Sludge/Slurry; Corral	20 – 30	15
Dairy Mechanical Screen Solids	10 - 20	5

Source: Pettygrove, Heinrich, and Crohn, 2009

• Year 2 N mineralization can result in a manure "credit" to be used in future N budget

Physical Properties of Manure

- Solids Fraction Remains After Water is Removed
 - Directly influences nutrient content, treatment processing, and handling
- Total Solids Reveal Physical Composition of Liquid or Slurry
 - Determine inorganic and organic solids composition
 - TS (Total) = FS (Fixed) + VS (Volatile)
 - Fixed solids remain after heating at 550C for 1h
 - No nutrient value, influences processing, and added weight
 - Volatile solids are lost after heating
 - Represent the organic matter content of liquid or slurry

Chemical Properties of Manure

- Chemical composition includes macro, secondary, and micronutrients
 - Characterization helps identify how nutrient levels impact crop productivity
- Chemical analysis reveals inorganic and organic nutrients
 - Inorganic N as ammonium and nitrate (immediately available)
 - Total Kjeldahl Nitrogen (TKN) = ammonium N + organic N
 - TKN ammonium = organic N
- Manure is a heterogeneous fertilizer product
 - Application to meet crop N requirements results in overapplication of P
 - Composting, bedding additions, animal diet, seasonal changes

Characterization of Dairy Manure

California Dairy Research Foundation Project (2020 – 2021)

Nick Clark, Anthony Fulford, Joy Hollingsworth, and Deanne Meyer

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources

Characterization of Dairy Manure

- Goal is to better characterize physical and chemical composition of dairy manure
- Manure sampled from liquid, slurry, and solids waste streams
 - Temperature and pH obtained immediately
 - Physical and chemical properties evaluated in the laboratory
- Dairies were categorized based on manure management system
 - Vacuum, solids separation, anaerobic digesters, and other approaches

Objective

- Identify the physical and chemical composition of manure from 20 Central Valley dairies
 - Vacuum (4 Dairies) preliminary results presented today
 - Compost Bedded Pack (3 Dairies)
 - Anaerobic Digester (8 Dairies)
 - 'Other' (5 Dairies)
- Manure collection occurred twice at each dairy
 - Characterize variability in physical and chemical composition
 - Examine compositional changes with seasons (cold vs. warm)

Preliminary Results Summary

- Physical composition (solids fraction) of vacuum manure differed by dairy but largely unchanged by season (cold vs. warm)
- Fraction of inorganic ammonium N was noticeably different among dairies and tended to be much lower in warm season
 - Observed decrease of inorganic N relative to organic N when sampling in warm season
- Total K and Ca of manure noticeably varied w/in and among dairies and trend was consistent between seasons
 - However, P and Na exhibited very small differences among dairies or seasons

Acknowledgements

- Central Valley Dairy Operators/Collaborators
- California Dairy Research Foundation
- Jennifer Heguy, Madeline Morataya, Chaitanya Muraka, Joyce Pexton, Benjamin Halleck