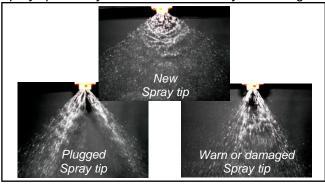


APPLICATION GUIDE TO SPRAY DROPLET SIZE, DRIFT, SPRAY TIP SELECTION AND SPRAY COVERAGE

Kurt Hembree, UC Cooperative Extension, Fresno County 550 E. Shaw Ave. Suite 210-B, Fresno, CA 93710 • Phone (559) 241-7520 Website: http://cefresno.ucanr.edu • Email: kjhembree@ucanr.edu

Successful weed control with herbicides rests on the ability to apply weed sprays accurately, uniformly, and efficiently. Spraying with enough coverage and minimal drift are important factors that influence herbicide performance and must be considered. Spray drift is the physical movement of spray particles through the air from the application site to an area where the treatment is not intended, usually resulting in non-target plant injury. Spray droplet size has the greatest influence on spray drift potential. Spray droplets <200 microns in diameter are light, remain airborne a long time, and are the most prone to drift, so should be avoided when using herbicides. Spray droplet size also influences spray coverage. Generally, as spray droplet size increases, spray coverage decreases. As a general rule, use spray nozzles and an operating pressures that produce large enough spray droplets (at least medium-sized) to minimize drift, while providing adequate coverage for the herbicide type(s) (contact, systemic, or preemergent) used. Examples of different types of drift-reducing nozzles and the spray coverage they produce at different spray volumes are shown below. Also, spray when conditions are favorable and replace spray tips that are warn or damaged.

zzles and their spray coverage (30 psi and 0.4 gpm)


3	Spray drople	Drift-reducing noz			
	Droplet color code	Droplet size	7.5 gpa	15 gpa	Nozzle type
	VF	Very Fine <145 microns	4.5		Extended (XR110
	F	Fine 145-225 microns			Turbo T (TT110
	M	Medium 226-325 microns			Turbo T (TTJ60-1
	С	Coarse 326-400 microns			Air Indu Extended (AIXR1
	vc	Very Coarse 401-500 microns			Air Indu (Al110
	xc	Extremely Coarse >500 microns			Turbo T Induct (TTI11

Nozzle type Extended Range	15 gpa	25 gpa	35 gpa	45 gpa
(XR11004)				
Turbo Teejet (TT11004)	O'T			an V
Turbo Twinjet (TTJ60-11004)				
Air Induction Extended Range (AIXR11004)				
Air Induction (Al11004)				
Turbo Teejet Induction (TTI11004)				

Application and environmental conditions affecting drift

	Application and environmental conditions affecting unit							
Favors less drift	Favors more drift							
>225 microns	<225 microns							
Lower	Higher							
Lower	Higher							
≤80°	>80°							
<6	>6							
Favors less drift	Favors more drift							
3 to 7	0 to <3, or >7							
<85 °F	>85 °F							
Higher (humid)	Lower (dry)							
Vertical mixing	Inversion layer							
	>225 microns Lower Lower ≤80° <6 Favors less drift 3 to 7 <85 °F Higher (humid)							

Spray tip delivery is critical for uniformity in coverage

