Subsurface Drip Irrigation, Deficit Irrigation Strategies in Alfalfa

Daniel H. Putnam, Umair Gull, Khaled Bali, James Radawich

Collaborators: Ali Montazar, Roger Baldwin, Daniele Zaccaria (Univ. of California)

Kearney Field Day, 9/19/18

University of California, Davis <u>dhputnam@ucdavis.edu</u> <u>http://alfalfa.ucdavis.edu</u>

Drip irrigated alfalfa field, California

Main Points

Subsurface Drip Irrigation is a viable system for irrigation of alfalfa but has some important limitations

Alfalfa is a crop well suited to 'Deficit Irrigation' (watering less than what the crop needs) to save water for other crops or for economic transfers

U.S. Drought Monitor West

September 11, 2018 (Released Thursday, Sep. 13, 2018) Valid 8 a.m. EDT

Drought Conditions (Percent Area)

	None	D0-D4	D1-D4	D2-D4	D3-D4	D4
Current	15.84	84.16	59.11	37.22	16.36	3.69
Last Week 09-04-2018	16.03	83.97	58.74	37.58	16.82	3.69
3 Month s Ago 06-12-2018	33.98	66.02	44.34	31.86	18.98	4.34
Start of Calendar Year 01-02-2018	48.76	51.24	29.03	8.60	1.52	0.00
Start of Water Year 09-26-2017	55.72	44.28	21.01	8.72	5.30	2.17
One Year Ago 09-12-2017	53.28	46.72	24.11	9.34	6.18	3.22

Intensity:

D4 Exceptional Drought

D1 Moderate Drought D2 Severe Drought

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

Author:

http://droughtmonitor.unl.edu/

U.S. Drought Monitor West

September 22, 2015

(Released Thursday, Sep. 24, 2015) Valid 8 a.m. EDT

Drought Conditions (Percent Area)

	None	D0-D4	D1-D4	D2-D4	D3-D4	D4
Current	22.79	77.21	58.18	42.49	26.73	7.62
Last Week 9/15/2015	24.68	75.32	59.66	42.69	26.73	7.62
3 Month s A go 623/2015	23.93	76.07	57.86	35.88	17.13	7.26
Start of Calendar Year 12302014	34.76	65.24	54.48	33.50	18.68	5.40
Start of Water Year 930/2014	31.48	68.52	55.57	35.65	19.95	8.90
One Year Ago 923/2014	31.18	68.82	56.42	35.96	20.00	8.90

Intensity:

D0 Ab normally Dry

D3 Extreme Drought

D4 Exceptional Drought

D1 Moderate Drought D2 Severe Drought

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

Author:

Eric Luebehusen U.S. Department of Agriculture

http://droughtmonitor.unl.edu/

Groundwater Challenge in the Central Valley

Kearney Field Day, Parlier, CA2018

Xiao et al. Apr. 2017

Impetus:

Periodic droughts Groundwater Depletion. Water transfers to other uses - Competing crops - Cities - Environmental (regulatory) Irrigation management is a major limiting factor for yield - Distribution uniformity, timing

Why Subsurface Drip (SDI)? (tomato story)

Overall Objectives Is Subsurface Drip Irrigation (SDI) a viable strategy for western alfalfa producers? Can Alfalfa be partially irrigated to achieve water savings and economically-viable yields?

Grower Experience with SD1 **Grower fields** Many Positives Better field distribution (DU) = 0.98Y_{Flood} + 3.00 Timing (quickly fill the profile). Hay yield in conventional irrigation system (ton ac-1 Lower labor +yields ~2-3 t/a High cost Maintenance Gopher - rodents Kearney Field Day, Parlier,

Innate Problems with Flood Irrigation

(Distribution uniformity can be poor due to soil infiltration rate, flow, and set duration)

In a 12 hour irrigation set:

Key Factors

Superior Distribution Uniformity (in Space)

Less difference between top and bottom of field
Well known problems with surface systems
Tail end management

Superior Distribution Uniformity (in Time)

- Ability to `charge' a field within hours, not days
- Most Flood-irrigated (and some sprinkle irrigated) fields require 4-12 days to irrigate, depending upon flow available.

Innate Problems with Flood Irrigation

In a 28 day growth cycle, some parts of the field get water 7-8 days later.

Kearney Field Day, Parlier, CA2018

Key Recommendations White We've learned: Rodents are perhaps THE major challenge for SDI in alfalfa

Leak Discovery Method

Deficit Irrigation
Periodic Drought
Competing Crops
`Regulatory Drought'
Voluntary Water Transfer

"Is partial season productivity better than fallow?" Sustaining Forage Production during drought

Evapotranspiration (Davis)

Kearney Trial (Fresno)

100% ET Flood
100% ET drip
50% ET drip sudden cutoff
75% ET drip season-long deficit
75% ET drip sudden cutoff

Kearney SDI Trial (Objectives 1 & 2)

Experimental Design (Fall 2016) Randomized Complete Block Design (RCBD) with 4 replications 25 ft *250 ft (Total acreage 3.44 acres)

