Irrigation and Salinity Management in Forage Production Systems Alfalfa and Forage Field Day 9/20/2017

Daniel Munk

Farm Advisor- UCCE Fresno County

dsmunk@ucanr.edu

University of **California** Agriculture and Natural Resources

Overview:

- Salinity origins and accumulation in soils
- Salinity tolerance in forage crops
- Water quality and balance
- Irrigation management and leaching

Sources of Salts in Soils

- Native salts
 - dissolution of primary and secondary soil minerals
 - Atmospheric deposition
 - Groundwater influence
 - Irrigation has often removed
- Fertilizer and composts
- Irrigation water
 - Surface or groundwater?

BMP: Water analysis should be conducted to know the quality of water!

Water quality varies throughout the San Joaquin Valley

- Groundwater quality dynamics are complex
- TDS is generally however:
 - Upper east valley positions; 100 to 500 ppm
 - Lower valley fan positions; 400 to 1,800
 - Above the Corcoran clay; 2,000 to 3,000 ppm
 - Below the Corcoran clay; 600 ppm to 1,800 ppm
 - Other issues; distance to canal, river, soil
 - Eastside surface water; 25 and 150 ppm
 - Westside San Luis Unit); 200 to 450 ppm

EC of 1.0 dS/m 5 ac ft for a crop, equates to 8,700 lbs./ ac/yr (4.4 tons)

Irrigation Water Guideline

		Degree of Restriction	DN
Specific Ion	None	Increasing	Severe
Sodium (ESP)	< 3.0	3 - 9	> 9.0
Chloride (meq/l)	< 4.0	4 - 10	> 10.0
Boron (mg/l)	< 0.5	0.5 - 3.0	> 3.0

2017 XXXX Farms Well Water Analysis

Drip Potential	рΗ	ECw (dS/m)	Ca+Mg <	Na	CI - meg/l -	CO3+HCO3	SAR	Adj SAR	B <	NO3-N	Mn m	Fe >
Yes	7.9	1.6	0.6	15.4	9.0	3.6	28.1	24.5	1.87	10	0.000	0.020
										Della	0.01	0.08
Yes	7.9	2.8	2.7	25.5	21.0	4.8	21.9	24.3	2.18	12	0.001	0.016
No	8.0	2.2	2.2	21.4	16.0	4.0	20.4	21.3	2.2	15	0.001	0.035
										Della	0.02	0.10
Yes	8.1	2.0	1.8	19.1	12.0	3.6	20.1	20.1	1.82	8		
Yes	8.1	1.5	2.2	14.1	7.5	4.0	13.4	14.6	2.01	2	0.001	0.039
										_		
No	8.4	1.6	2.3	13.9	7.0	4.8	13.0	14.5	1.53	6	0.002	0.491
N/s s	0.0		2.0	0.4	0.0	1.0	7.4	<u> </u>	4 40	4.4	0.000	0.000
Yes	8.0	1.1	3.0	9.1	2.0	1.2	7.4	6.2	1.48	11	0.003	0.000
No	7.4	1.2	3.8	8.6	1.0	1.2	6.2	5.5	0.90	5		
Yes	7.3	1.2	4.5	0.8	1.5	0.4	5.9	3.9	0.55	2	0.002	0.000

University of **California** Agriculture and Natural Resources

Well Water Analysis: Interpretation

		1									
Sample	рН	Ecw (dS/m)	Ca (meq/L)	Mg	Na	HCO3 (meq/L)	SO4	Cl	SAR	SARadj	B (ppm)
High	7.79	2.88	10.10	14.4	12.0	4.71	26.8	4.55	3.43	8.13	0.77
		J									
UC	<7.0	<1.1			SAR			<4.0	<3.0		<0.5

Acidifying water will drop adjusted SAR closer to reported SAR

pH dependent: Indicates that Ca2+ or Mg2+ will not remain free in soil solution

Water is too hot!

Lowering pH of Irrigation Water

Why?

Can increase water penetration, soil structure Can improve mineral nutrition

- Titration for water must be performed to determine amounts needed.
- Send water plus acid of choice to a local lab.

Determining Acid Rates

Figure 2. Titrations of two different waters with sulfuric acid. Notice that although the beginning pH of Grower A water is a full unit higher than Grower B water, it takes more than 4 times the acid to drop Grower B water to pH 5.8, due to the greater alkalinity in Grower B water.

	Formulation and	Amount of acid to add for each meq/L of	Concentration of nutrient provided	Cost per	
	formula weight	water pH of	acid per 1000	per 1000	
Acid	(FW)	approximately 5.8*	gallons water**	gal***	Relative safety****
Citric acid (2-Hydroxy-1,2,3- propanetricarboxylic	99.5% (w:w) granular FW = 192.1	9.1 oz/1000 gals	none	\$0.59	can cause minor skin and eye irritation
acid) H ₃ C ₆ H ₅ O ₇	50% (w:w) liquid d = 1.21	14.5 fl. oz/1000 gals	none	\$0.96	can cause minor skin and eye irritation
Nitric acid H ₂ NO ₃	67% (w:w) liquid d = 1.42	6.6 fl oz/1000 gals	1.64 ppm N	\$0.26	use extreme caution; very caustic and dangerous; avoid contact with fumes as well as acid
Phosphoric acid H ₃ PO ₄	75% (w:w) liquid d = 1.58	8.1 fl oz/1000 gals	2.88 ppm P	\$0.44	slightly caustic; can cause skin and eye irritation as well as damage clothing
Sulfuric acid H ₂ SO ₄	35% (w:w) liquid d = 1.26	11.0 fl oz/1000 gals	1.14 ppm S	\$0.16	slightly caustic; can cause skin and eye irritation as well as damage clothing

Table 1. Acids commonly used to acidify irrigation water and their properties.

*Add this amount for each meq/L of alkalinity present. For example, if your water report indicates an alkanity of 3 meq/L and you choose to use sulfuric acid, you would add 33 fl oz. of 35% sulfuric acid per 1000 gallons of water (11 fl oz/meq/L × 3 meq/L = 33 fl oz). Calculations based on the following dissociation values: 2.07 meq H⁺ per 3 meq H₃C₆H₅O₇, 1 meq H⁺ per 1 meq H₂NO₃, 1.02 meq H⁺ per 3 meq H₃PO₄, and 1 meq H⁺ per 1 meq H₂SO₄.

**In the above example, the acid would supply 38 ppm S at each irrigation (33 fl oz × 1.14 ppm S/fl oz. = 33 ppm S).

***Acid cost to neutralize 1 meq/L alkalinity per 1000 gallons of water. Based on the following costs: \$1.04/lb of 99.5% citric acid; \$8.45/gal of 50% citric acid; \$5.00/gal of 67% nitric acid; \$7.00/gal of 75% phosphoric acid; \$1.90/gal of 35% sulfuric acid.

****Use caution with ALL acids. Wear eye protection, acid-resistant gloves, and an acid-resistant apron when handling any acid.

Adding Calcium to Irrigation Water

Why?

- To lower SAR and increase EC
 - Can increase water penetration
 - Can improve soil structure
- To reduce toxic ion effects (Cl, Na)

Adding Calcium to Irrigation Water

Salt	Formulation	Solubility (distill at pl	Soil Rxn and effect on pH	
		(g/100 mls)	General rating	
Calcium nitrate	Ca(NO3)2	121	Highly soluble	Gradual, Neutral
Calcium chloride dihydrate	CaCl ₂ · 2 H ₂ O	98	Highly soluble	Gradual, Neutral
Calcium chloride	CaCl2	74	Highly soluble	Gradual, Neutral
Calcium acetate	C ₄ H ₆ CaO ₄	34.7	Highly soluble	Increase pH of acid soils
Gypsum	$CaSO_4 \cdot 2H_2O$	0.26	Moderately soluble	Gradual, Neutral
Dolomite	CaMg(CO ₃) ₂	0.03 (depends on soil ph)	Low solubility	Increase pH of acid soils
Lime	CaCO3	0.005 (depends on soil ph)	Very low solubility	Increase pH of acid soils
By-product ash	CaO or Ca(OH) ₂	Variable (depends on soil pH)	Very low solubility	Increase pH of acid soils

Source: CRC Handbook of Chemistry and Physics, 56th Edition

Adding Calcium to Irrigation Water

- In solution: ~ 250 lbs of gypsum/acre ft to increase one meq/l of calcium
- Land grade applications made monthly

Saturated Soil Extract Guide

	Degree of Restriction					
Specific Ion	None	Increasing	Severe			
Sodium (ESP)	< 5.0	5 - 15	> 15.0			
Chloride (meq/l)	< 5.0	5 - 15	> 15.0			
Boron (mg/l)	< 0.5	0.5 - 3.0	> 3.0			

Well Water Analysis: Interpretation Boron

Sample	рН	Ecw (dS/m)	Ca (meq/L)	Mg	Na	HCO3 (meq/L)	SO4	Cl	SAR	SARadj	B (ppm)
High	7.79	2.88	10.10	14.4	12.0	4.71	26.80	4.55	3.43	8.13	0.77
ОК	7.89	1.20	4.33	3.5	6.42	1.77	10.1	0.99	3.25	5.44	0.46
???	7.66	0.86	1.91	2.9	4.48	6.3	0.36	1.69	2.91	6.74	2.6
L) (
UC	<7.0	<1.1			SAR			<4.0	<3.0		<0.5

	Degree of F	Degree of Restriction							
	None	Increasing	Severe						
Boron (mg/L)	<0.5	0.5-3.0	>3.0						

Crop Salt Tolerance

Total Salinity (dS/m)

Yield= 100 – M(ECe – A)

M= slope, ECe= Avg. RZ Salinity, A= Threshold

• Plant genetics play a primary role in the various mechanisms governing crop salt tolerance.

<u>Crop</u>	<u>M</u>	<u>Threshold</u>
Wheat	6.1	3.8
Barley	8.0	5.0
Corn(for.)	1.7	7.4
Sorghum	6.8	16.0
Alfalfa	2.0	7.3*
Beans	1.0	19.0
Almond	1.5	19.0

Salinity Tolerance of Alfalfa

Fig. 2. Relative yield (RY) of various crops as a function of soil EC_e (Sanden, et al., 2004).

How Tough is alfalfa?

- Variety dependent
- Slightly to moderately tolerant
- Know your variety!

University of **California** Agriculture and Natural Resources

Salt tolerance is based on soil salinity (ECe)

How does this help with my irrigation water quality report that gives me ECw?

Leaching Fraction (LF)

LF = volume of drainage water/volume of infiltrated water LF = depth of drainage water/depth of infiltrated LF = ECdw/ECw x 100; Cldw/Clw,

ECe

ECe

Average Root Zone ECe (dS/m)

What is ECe if ECw is 2.0 dS/m and the LF is either 40 or 10 %? Conventional Irrigation

Average Root Zone ECe (dS/m)

Final Thoughts

- Know your system!
 - Water quality options (well 1 vs. well 2)
 - Do you have recent soil and water data (adequate?)
 - What is your critical root zone? (alfalfa vs. forage)
- Do you have (get) a windfall in water?
 - Leaching with high quality irrigation water can erase years of salinity buildup.

Final Thoughts

- Field variability
- Does your irrigation system accommodate your agronomic system needs?
 - System DU
 - Ability to be efficient and Ability to leach
- Know your water, soil, and utilize a leaching fraction

University of **California** Agriculture and Natural Resources

Thank you!

Well Water Analysis: Interpretation

Sample	рН	Ecw (dS/m)	Ca (meq/L)	Mg	Na	HCO3 (meq/L)	SO4	Cl	SAR	SARadj	B (ppm)
High	7.79	2.88	10.10	14.4	12.0	4.71	26.8	4.55	3.43	8.13	0.77
								L		J	
UC	<7.0	<1.1			SAR			<4.0	<3.0		<0.5

				Water is not id <mark>e</mark> al	!
	Degree o	f Restriction			
	None	Increasing	Severe		Na ⁺
SAR	<3.0	3-9	>9.0	SAR =	
Chloride				/ Ca⁺	$^{+} + Mg^{++}$
(meq/l)	<5	5-15	>15	\sim $$	
				- N	2

