Future Trends in Corn Genetics and Biotechnology

California Alfalfa & Forage Symposium

Bill Curran, Ph.D.
Greeley, Colorado
Plant Breeding

The art and science of genetic improvement of plants
Knowledge Rich Library

- Proprietary genetics library
- 75 years of documented performance data
- Genomic descriptions of best lines
- Unique advantage – can’t be duplicated
Increasingly Erect Leaves

Left 1930s

Right 1990s
Smaller Tassels

Left 1930s

Right 1990s
Increased Flowering Synchrony

1930s

1990s
Improvements in Corn Productivity under Drought Stress

Pioneer Hi-Bred Int'l. Hybrids

![Historical Progress Chart]

- Bushels produced/inch of water in drought environment
- Decade of Release:
 - 20's
 - 30's
 - 40's
 - 50's
 - 60's
 - 70's
 - 80's
 - 90's

Legend:
- Historical Progress
- UCD Alfalfa Workgroup
Traditional Breeding

UCD Alfalfa Workgroup
Traditional Corn Breeding

- Germplasm Pool – The collection of inbreds and genes available for making new products
- Breeding Population – A cross between two or more inbreds to create variability
- Inbreeding & Selection – The process of selecting the best individual in a breeding cross
- Recycle elite germplasm – Once a new inbred is created it is added to our germplasm pool and serves a base of improved performance
Advance the inbred based on its hybrids performance in multi-location, multi-year field trials.
Doubled Haploids
UCD Alfalfa Workgroup
Doubled Haploids – Instant Inbreds

Traditional Inbreeding:
- 7 generations

Doubled Haploids:
- 2 generations

Advantages:
- Increases precision of molecular markers
- Reduces hybrid development cycle time 1-2 years
- Increases options for per se selection (parent traits, disease, maturity)
- Breeding impact – more complex pedigree selection away from home nursery
Doubled Haploid Lines

• 100% fixed, genetically uniform lines

• Improves breeding by...
 • Increasing genetic differences between lines
 • Increasing uniformity
 – easier to measure traits
 – increases repeatability
 • Testing final product immediately
 • Reduces product development time
Molecular Breeding

Genetic mapping
Map-based cloning

UCD Alfalfa Workgroup
Molecular Breeding

- **Identify parents**
 - Load breeding pipeline with known genotypes
 - More predictive of performance

- **Select superior progeny**
 - Identify progeny with traits not expressed in testing environment (e.g. select for GLS where disease does not occur)

- **Test final products**
 - Predict performance in non-stress environments
 - Predict favorable new combinations of inbred parents based on complementary molecular profiles
Molecular Breeding

- Enhance diversity of germplasm pool
 - Move small segment of exotic chromosome into elite background without “drag”
 - Ex) move genes from teosinte or landrace into elite corn without having to do extensive backcrossing and repeated phenotyping to eliminate yield, maturity and adaptation drag
 - Scan corn genome for sequences of interest identified in other species
 - Move gene from other species into corn (transgenes)
Inbred Selection Using Molecular Markers

- Molecular markers "tag" valuable chromosome segments
- Quickly determine if inbreds and hybrids possess a gene for a target trait
- Aggressively profiling eight decades of germplasm to create a master genetic map

Drives agronomic performance gains (e.g., anthracnose, SCN)
Molecular Marker Based Selection

- Phenotype = Genotype + Env + (Geno*Env)
 - Not all genotypes are observed in all environments!
- Markers allow for selection of genomic sections with known phenotypic effects in environments not conducive to phenotypic expression.
- Starting point of finding the underlying genes responsible for phenotype
Current Uses

- Understanding of Genetic Relationships

- Conversion Quality

- Corn Product Development
 - Targeting “Key” Traits
 - Important tool in inbred/hybrid development

- Germplasm protection
Other biotechnology applications

- **Transgenes**
 - European corn borer resistance ("bt")
 - Corn rootworm resistance
 - Herbicide tolerance

- **Future potential**
 - Yield
 - Drought tolerance
 - N-use efficiency
 - Nutritional and industrial traits

- **Intellectual property**
 - DNA fingerprints
 - Protect investment to insure plant breeding future research

- **Gene discovery**
 - Genome sequencing
 - Gene expression
 - Understanding gene function
Gene Shuffling

- Parental genes
- Derived gene variants
- Trait assays
 - Selected progeny genes
 - Assay
 - Selection
 - Shuffling

- Single Genes
- Gene Families
- Gene Pathways
- Whole Genomes
 - In vitro
 - In vivo
 - In silico

Repeat (Optional)
Ultimate Goal of Breeding is:
- Selecting for measurable improvements in traits

- Trade-off
- Test for measured improvement
- Stay focused

Corn Hybrid Variation

Is range broad enough to make meaningful progress?
Growing Value From Agronomic Traits

- **Drought tolerance**
 - Proprietary testing environments
 - Numerous early stage leads validated in multiple model crops
 - Average annual drought loss $8 billion globally

- **Nitrogen responsiveness**
 - Maintain yields using less nitrogen
 - Increase yields at current nitrogen levels
 - Industry-leading testing environments
 - Average nitrogen cost = $40/acre

- **Yield enhancement**
 - Farmers’ No. 1 priority
 - Six soybean biotech events in advanced testing
 - Numerous corn leads undergoing inbred evaluation

<table>
<thead>
<tr>
<th>Trait</th>
<th>Discovery</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Phase 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drought Tolerance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen Responsiveness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soybean Yield Enhancement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average Soybean Yield Advantage Over Control Varieties During Past Two Years

- **Drought Tolerance**
 - Check Hybrid
 - Pioneer Experimental Hybrid

UCD Alfalfa Workgroup
2008 Crop Genetics Pipeline

<table>
<thead>
<tr>
<th>Discovery</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Phase 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene/Trait Identification</td>
<td>Proof of Concept</td>
<td>Early Development</td>
<td>Advanced Development</td>
<td>Pre-Launch</td>
</tr>
</tbody>
</table>

- Anthracnose Stalk Rot Resistance
- Fungal Disease Resistance
- Optimum® GA™
- Optimum® AcreMax™ 1
- Optimum® AcreMax™ 2
- Optimum® AcreMax™ 3
- Triple-Mode Herbicide Tolerance
- Drought Tolerance I
- Drought Tolerance II
- Nitrogen Use Efficiency
- Increased Yield I
- Increased Yield II
- Increased Ethanol Production II
- Increased Ethanol Production III
- Improved Feed II
- Improved Feed III
- Seed Production Technology
- Asian Soybean Rust Resistance
- Optimum® GAT™
- Triple-Mode Herbicide Tolerance
- Lepidopteran Resistance
- Hemiptera Resistance
- Aphid Resistance
- Cyst Nematode Resistance
- Increased Yield II
- Increased Yield III
- Improved Feed I
- Improved Feed II
- High Oleic + High Stearic Acid Oil
- High Oleic Acid Oil
- Omega-3 Oil
- Improved Flavor
- Improved Functionality
- Rice - Insect Resistance
- Canola - Glyphosate Tolerance
- Alfa - Glyphosate Tolerance

Proprietary Pioneer Glyphosate + ALS Tolerance trait
Questions?