CHALLENGES AND BENEFITS OF INTERSEEDING LEGUMES INTO GRASS DOMINATED STANDS

Joe Brummer, Colorado State University
Glenn Shewmaker, University of Idaho
Chanda Engel, Oregon State University
Interseeding

• AKA: Sod seeding, no-till seeding, overseeding
• Introduction of seeds of new forage species into existing stands
 – Add legumes to grass dominated stands
 – Add grasses to thinning stands of alfalfa (or other legumes) to prolong stand life
 – Thicken declining grass stands
 – Add annual forages to perennial stands
Benefits of Interseeding

• Increased forage yield and quality
• Reduced need for nitrogen fertilizer when interseeding legumes

• Compared to complete renovation:
 – More cost effective
 – Erosion potential is minimized
 – Less down time and loss of productivity
Challenges of Interseeding

• Established plants compete very effectively
 – Risk of failure is higher compared to complete renovation
 – Establishment success improves significantly if existing vegetation is suppressed prior to seeding
 – Can take 2 to 3 years before interseeded plants achieve full productivity
 • Must be patient!!!!

• Interseeding drills that effectively seed into existing vegetation are expensive and often difficult to find
Methods of Reducing Competition

• Herbicides
 – Consistently most successful method
 – Roundup (apply at sublethal rates)
 – Gramaxone (burndown)

• Heavy grazing up until time of seeding
 – Use electric fence to concentrate animals
 – Can graze after seedlings emerge if done properly

• Mechanical
 – Light disking
 – Shallow rototilling
 – Flail mowing
Use of Herbicides for Interseeding

- Roundup (glyphosate) consistently gives good sod control for most pasture species
- Apply $\frac{3}{4}$ to 2 qts/acre with a surfactant when existing vegetation is 4 to 6 inches tall and actively growing
 - Fall application after the first hard frost has also been successful
- Wait a minimum of 2 weeks after application before seeding
Demonstration Trials

• Conducted near:
 – Fort Collins, CO
 • Flood irrigated from gated pipe
 • Dominated by orchardgrass, meadow brome, and smooth brome with minor amounts of tall fescue and perennial ryegrass
 – Kimberly, ID
 • Irrigated with pivot sprinkler
 • Dominated by orchardgrass with minor amounts of smooth brome, perennial ryegrass, and Kentucky bluegrass
 – Klamath Falls, OR
 • Flood irrigated mountain meadow
 • Dominated by meadow foxtail and Kentucky bluegrass
Treatments

• Legumes evaluated:
 – ‘Rugged’ alfalfa @ 8 lbs PLS/ac
 – ‘Norcen’ birdsfoot trefoil @ 6 lbs PLS/ac
 – ‘Shoshone’ sainfoin @ 18 lbs PLS/ac
 – ‘Starfire’ red clover @ 5 lbs PLS/ac
 – ‘Kopu II’ white clover @ 3 lbs PLS/ac

• Suppression treatments:
 – No suppression (seeded directly into existing veg.)
 – Mowed (2 in. stubble height just prior to seeding)
 – Glyphosate (1 qt/acre 2 weeks prior to seeding)
Treatments (cont.)

• Controls
 – No fertilizer/no seed
 – Nitrogen fertilizer
 • 60 or 80 lbs N/ac in the spring

• Randomized complete block design with 4 reps
 – Plot size was 6 by 20 ft.

• Larger scale strip plots were also established
Interseeding Drill Used in Idaho

Modified John Deere Powr-till
- Reduced from 8 to 4 ft.
- 6 openers on 8 in. centers
- Cone seeder attachment
Interseeding Drill Used in Colorado and Oregon

Great Plains No-till
- 5.6 ft.
- 9 double-disk openers on 7.5 in. centers
- 17 in. Fluted coulter
- Cone seeder attachment
Examples of Suppression Treatments

Idaho

Colorado

Oregon
Frequency of Occurrence

<table>
<thead>
<tr>
<th>Species</th>
<th>No Suppression</th>
<th>Mow</th>
<th>Glyphosate</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Colorado (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alfalfa</td>
<td>4.0</td>
<td>1.0</td>
<td>73.0</td>
<td>26.0</td>
</tr>
<tr>
<td>Birdsfoot Trefoil</td>
<td>0.0</td>
<td>0.0</td>
<td>29.0</td>
<td>9.7</td>
</tr>
<tr>
<td>Red Clover</td>
<td>0.5</td>
<td>0.0</td>
<td>37.0</td>
<td>12.5</td>
</tr>
<tr>
<td>Sainfoin</td>
<td>0.0</td>
<td>0.0</td>
<td>33.5</td>
<td>11.2</td>
</tr>
<tr>
<td>White Clover</td>
<td>0.0</td>
<td>0.0</td>
<td>15.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Mean</td>
<td>0.9</td>
<td>0.2</td>
<td>37.5</td>
<td></td>
</tr>
<tr>
<td>Idaho (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alfalfa</td>
<td>6.5</td>
<td>3.0</td>
<td>27.0</td>
<td>12.2</td>
</tr>
<tr>
<td>Birdsfoot Trefoil</td>
<td>31.3</td>
<td>4.0</td>
<td>2.5</td>
<td>12.6</td>
</tr>
<tr>
<td>Red Clover</td>
<td>34.0</td>
<td>34.0</td>
<td>49.0</td>
<td>39.0</td>
</tr>
<tr>
<td>Sainfoin</td>
<td>9.0</td>
<td>4.5</td>
<td>19.5</td>
<td>11.0</td>
</tr>
<tr>
<td>White Clover</td>
<td>16.0</td>
<td>23.0</td>
<td>6.7</td>
<td>15.2</td>
</tr>
<tr>
<td>Mean</td>
<td>19.4</td>
<td>13.7</td>
<td>20.9</td>
<td></td>
</tr>
</tbody>
</table>
Total Seasonal Yield

<table>
<thead>
<tr>
<th>Species</th>
<th>No Suppression</th>
<th>Mow</th>
<th>Glyphosate</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorado (lbs/ac)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td>1091</td>
</tr>
<tr>
<td>Fertilized</td>
<td></td>
<td></td>
<td></td>
<td>2527</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>1391</td>
<td>1007</td>
<td>3243</td>
<td>1880</td>
</tr>
<tr>
<td>Birdsfoot Trefoil</td>
<td>1398</td>
<td>1394</td>
<td>1756</td>
<td>1516</td>
</tr>
<tr>
<td>Red Clover</td>
<td>1063</td>
<td>989</td>
<td>2204</td>
<td>1418</td>
</tr>
<tr>
<td>Sainfoin</td>
<td>891</td>
<td>744</td>
<td>1124</td>
<td>919</td>
</tr>
<tr>
<td>White Clover</td>
<td>1177</td>
<td>1075</td>
<td>1498</td>
<td>1250</td>
</tr>
<tr>
<td>Mean</td>
<td>1184</td>
<td>1042</td>
<td>1965</td>
<td></td>
</tr>
<tr>
<td>Idaho (lbs/ac)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td>4025</td>
</tr>
<tr>
<td>Fertilized</td>
<td></td>
<td></td>
<td></td>
<td>3438<sup>a</sup></td>
</tr>
<tr>
<td>Alfalfa</td>
<td>3564</td>
<td>3558</td>
<td>4324</td>
<td>3815</td>
</tr>
<tr>
<td>Birdsfoot Trefoil</td>
<td>3786</td>
<td>4289</td>
<td>4097</td>
<td>4057</td>
</tr>
<tr>
<td>Red Clover</td>
<td>5073</td>
<td>4774</td>
<td>5666</td>
<td>5171</td>
</tr>
<tr>
<td>Sainfoin</td>
<td>3815</td>
<td>3276</td>
<td>4241</td>
<td>3778</td>
</tr>
<tr>
<td>White Clover</td>
<td>4247</td>
<td>3797</td>
<td>3702</td>
<td>3915</td>
</tr>
<tr>
<td>Mean</td>
<td>4097</td>
<td>3939</td>
<td>4406</td>
<td></td>
</tr>
</tbody>
</table>

^aPlot was not fertilized in 2011.
Idaho Results

Alfalfa - Glyphosate

Red Clover - Glyphosate

2010 Strip Plots - October 4, 2011 Harvest

2010 Planting--October 4, 2011 Harvest
Colorado Results

Alfalfa - Glyphosate

Red Clover - Glyphosate
Colorado Results

Birdsfoot trefoil - Glyphosate
Colorado Results

Sainfoin - Glyphosate

White Clover - Glyphosate
Management Implications

• Confirmed the importance of suppressing the existing vegetation and seeding a vigorous legume species to improve establishment.
 – Glyphosate suppression = most consistent est.
 – Close mowing = generally did not improve est.
 – Alfalfa and red clover = best est., most vigorous
 – Birdsfoot trefoil and white clover = intermed. est.

• Although sainfoin established, it did not compete and contribute to forage yield.